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ABSTRACT

The cffoct of segmental motion on the density-density correlation
function of a viscous polymer liquid has been analyzed using a general-
ized relaxation equation developed by Zwanzig and Mori.
polymer liquids of high viscosity Brillouin scattering is closely asso-
ciated with the structural relaxation associated with the motion of
chain segments. A single relaxation time theory is shown to yield
good agreement with the experimental results on polypropylene glycol.
The torsional motion involving a small number of monomer units is shown
to be responsible for the dispersion and attenuation of the hypersonic
wave. The fact that the Brillouin scattering spectrum of a polymer 1i-
quid  is insensitive to the change of molecular weight is discusscd.

We have shown that temporal modulation of the spatial second moment of

the intermolecular or inter-segmental interaction energy is responsible

for the relaxation process involved in Brillouin scattering.

It is shown that

for

i




INTRODUCT ION

Measurements of viscoelastic properties of undiluted polymers and

polymer solutions can provide information about the nature and rates

of the configurational rearrangements. A knowledge of the translation-
al and rotational motion of polymer molecules and their segments has
been important in elucidating the structure of macromolecules in the
liquid state.!

Modern developments in optical technology-have made polarized Ray-
leigh-Brillouin scattering spectroscopy one of the most useful methods
for the investigation of viscoelasticity of macromolecules in the high
frequency (10g Hz) range.

Recent experimental studies have shown that the Rayleigh-Brillouin
spectra of polymer fluids are sensitive to the molecular configurational
rearrangements and segmental motion of flexible polymer chains.? There
is at present, however, no procedure or guideline with which quantita-
tive information about the polymer dynamics can be extracted from the
experimental data using this technique. The field of inelastic laser
light scattering of polymers and polymer solutions is presently in a
stage of development.

In the low frequency range, the bead-spring (Rouse-Zim) model pro-
vides an adequate description of the dynamic properties of macromolecules
in solution. At high frequencies the polymer chain dynamics are governed
by localized motion involving only a few ségments. The length of the
pol}mer chain is not expected to greatly affect the chain dynamics. In
other words, one does not expect the Brillouin spectrum of polymers to

be sensitive to the change of molecular weight. This was indeed observed

experimentally,3,"




However, we still do not know at present how the small scale mo-

tion involving very few segments affects the Rayleigh-Brillouin spec-

/' trum of a polymer solution. In other words, we do not know how to
gi ‘ relate the hypersonic data of a polymer system to the dynamics of seg-
mental motion.

To analyze the type of information that one may learn by studying

f»i the Brillouin-Rayleigh spectrum of a polymer fluid, we have investi-

gated theoretically the effect of polymer segmental motion on the den-

_§@ sity-density time correlation function. The density-density time cor-

relation function is proportional to the Fourier transform of the ob-

IR

served Brillouin-Rayleigh spectrum. In the present paper, we have
analyzed the relaxation process involved in affecting the peak fre-
quency and the linewidth of the Brillouin spectrum of a polymer 1li-

quid. Finally, we have used the linear response theory introduced

:
H
|

by Zwanzig to analyze the motion of the normal mode of a bulk polymer

liquid. We have interpreted the Brillouin spectra of pure polypro-

pylene glycol liquids in terms of this new theoretical result.

THE DENSTTY-DENSITY CORRELATION FUNCTION OF A POLYMER FLUID

Consider a pure polymer fluid which is made up of a collection of
identical polymer segments. Each macromolecule contains n-segments
and the illuminated volume contains N molecules. The polarized Bril-
louin-Rayleigh spectrum is determined mainly by the Fourier transform
of the time correlation function C(t), given by“,
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where C(t) is the qth spatial component of the density-density corre-
lation function; p and p” are indices denoting the macromolecules,

and j, k denote the segments in a macromolecule. RP(t) is the posi-

tion (the bead position) vector of segment j and polymer p with re-

spect to the laboratory coordinate frame at time t. The summation

over p, p°, j and k are over all polymer segments inside the scatter-

ing volume. q is the wave vector of the excitation mode selected

through the Bragg condition in light scattering. The amplitude of q

is equal to

%;E»sine/Z

(2)
0

where Xo is the wavelength of incident light in vacuum, n is the index

of refraction and 6 is the scattering angle.

For fluids consisting of small size molecules, one can analyze C(t)

in terms of entropy and pressure fluctuations. These fluctuations can

then be calculated using the linearized hydrodynamic equations with fre-
quency dependent transport coefficients in a manner similar to that of

ordinary low viscosity fluids consisting of small molecules. As the

polymer molecule increases in size, the center of mass motion becomes

very slow and the diffusive entropy fluctuations then dominate the time

evolution of C(t). Moreover, in ordinary low viscosity fluids, the width

of the Brillouin doublet is predicted to increase with increasing vis-
cosity.® For polymer fluids of high viscosity this prediction would
lead to such wide Brillouin peaks that they would not be observable.

In Fig. 1 the peak frequency and linewidth of the Brillouin peak of

polypropylene glycols are shown as a function of viscosity. For the

experimental data at two temperatures the frequency as well as the line-
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width appear to be independént of viscosity. This is in complete dis-
agreement with theoretical results. In fact the Brillouin peaks of
highly viscous polymer fluids are quite sharp near T .2 The discrep-
ancy between the results of an ordinary fluid and a polymer fluid is
believed to be due to the segmental motion that is present in the
polymer fluid. The segmental motion leads to the breakdown of the
Navier-Stokes equation. As a result the usual hydrodynamic equations
cannot be hsed to calculate the Brillouin spectrum of a polymer fluid.
The structural relaxation which has a dominant effect on the propagation
and absorption of the hypersonic wave in a liquid consisting of macro-
molecules, but this is not adequately accounted for in the hydrodynamics
equation.

For a polymer fluid consisting of flexible polymer segments, the
correlation function C(t) is expected to depend strongly on tempera-
ture, due to the fact that the structural relaxation time of a polymer
fluid depends strongly on temperature. At high temperature, the rate
of segmental relaxation is comparable with the frequency of the hyper-
sonic sound wave; in this case the segmental motion will contribute
significantly to the Jlinewidths of the Brillouin side bands. At low
temperature, the rate of segmental fluctuations is slow compared with
the hypersonic frequency, but fast compared to the thermal diffusion
rate. In this case the segmental motion will manifest itself as a broad
line superimposed upon the central Rayleigh component arising from the
translational diffusion. Therefore, the time evolution of C(t) is asso-
ciated with the whole region of the Brillouin-Rayleigh spectrum.

The question of great interest is what are the effects of the struc-
tural relaxation on the Brillouin-Rayleigh spectrum? To answer this

question a microscopic theory on structural relaxation is in order.




In order to develop a microscopic theory for the Brillouin scat-
tering spectrum of a bulk polymer, one needs to investigate the cor-
relation function C(t) as defined in Eq. (1) which can also be writ-

ten as

C(t) = <So(q,t)6n*(91‘ (3)

where 8p(q,t) is the qth spatial Fourier cowponent of the density fluc-
tuation and is given by
So(q,t) = £ ¥ ciq'R};(t) o Y0 eiq:‘j‘(t)
h P pJ (4

where the direction of q is taken to be parallel to the Z-axis, and
each polymer segment j of polymer p contributes to the density fluc-
tuation by a term eing. To calculate C(t) using a microscopic equa-
tion, we first realize that the density fluctuation does not occur in-
dependently. The momentum and energy density fluctuations couple also
to the density fluctuation. In this paper we suppress the coupling of
the density and energy. This is justified because our primary interest
lies in the study of the Brillouin doublet in which the effect of ther-
mal conductivity can be neglected for an isothermal system.

Among the three components of momentum density, only the longitudinal
component in the direction of q is coupled to S0, as the coupling to the

transverse components perpendicular to q is prevented by symmetrv.® The

expression for the longitudinal momentum density is given by

: ¢ Lot
gz(q,t) =8 mos Zp(t)e]qzj(t)
% P j PJ

where mpi is the mass of j segment of polymer p.




The qth mode of the deﬁsity fluctuation gives rise to two Brillouin
peaks: the Stokes and anti-Stokes peaks. The two peaks correspond to
acoustic waves propagating in two oprosite directions. We show in Ap-
pendix I that the two acoustic modes with opposite frequency, w , are
represented by the dynamic variables £, and £ which are given by

g ety

g, = — ( = )
fVT <lep]20 <lg, |2

(6)

Thus the density fluctuation §p can be expressed in terms of £+ and £,

8p = (g, + €

+ -

/2 (7)
The density-density correlation function C(t) is then given by
1 * * *

Gft) = 5 <|op|faf<e (E)E, > + <C (£)}E > « <€ (L)€ > +

<€_(1)E, >) &

where the first two terms on the right hand side of Eq. (8) corresponds ;
to the two acoustic waves propogating in opposite directions. The last

two terms vanish at t = O, but are finite at t # O duc to the dynamic

coupling of the two acoustic modes with opposite mq. These can contrib-

ute to the intensity to the central Rayleigh component. These can be

neglected in calculating the spectrum of the Brillouin doublet. There- ;

fore, calculation of the Brillouin spectrum reduces to the calculation

of the correlation functions given by

C (e} = <£ (8)E, > (9

Since both £, and £ depend on the same q and give similar physical re-
sults, in the following we shall use Eq for either g, or £, and Cq(t)

for C, ().
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In principle, if one hés a proper expression for the equation of
motion of £q(t), the correlation function Cq(t) can then he calculated
according to the method of irreversible statistical mechanics. Formal-
ly, the equation of motion for £(t) is given by

9 :

3t Eq(t) = 1 L Eq(t) (10)
where L is the Liouville operator which governs the time evolution of
the dynamib variable Eq(t). While it is straight-forward to write
down a formal expression for L in terms of the kinetic and potential
energy operators in a many body system, in practice this is never done
in a polymer system due to the large number of internal degrece of free-
dom and unknown intra- and inter-molecular potential functions. For a
dilute polymer solution, Kirkwood's generalized diffusion equation or
the stochastic Fokker-Planck equation has been employed to evaluate
the time correlation functions associated with the intrinsic viscosity’
and internal viscosity®, however, an appropriate Liouvill operator for
a bulk polymer has not yet been developed.

Nevertheless, even in the absence of an appropriate Liouville
operator, useful insight on the bechavior of the linewidth and frequency
shift of a Brillouin spectrum of a polymer fluid can be obtained from
Eq. (10) using the linear response theory developed by Zwanzig®.

We start by defining a projection operator P such that when it

operates on a general function G, it yields

PG = L & <6 & *> 1 ogp *>
] q q 4 q
(11

where G is a function of {q and may be time dependent.
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The correlation function Cq(t) can be constructed by using P ac-
cording to

— < . 7 *
qu(t) T ]i E’kgkgk*> <E;q(t)£k 2

*s"1
Bk 0™ £ )
(12)

where we have assumed that there is no correlation between normal modes
of different wave vectors.

Accoraing to the well-known procedure? , the equation of motion
for Cq(t) can be shown (using Eqs. (11} and (12) to follow a general-

ized Langevin equation,

3Cq (1) 't )
s BT mq (q(t) '] dt K(1) Cq(T'T)
X (13)
where the frequency mq is given by
= : =l
Wy = <lLEqlE *><E g > (14)

and K(1) is the memory function given by

e - T ¥ b %51

Keed = <R(yReoas 2 & (15)
where

) = et EIRT gens (16)
and

RS SeD o 8 (17)

The gencralized Langevin equation as given in Eq. (13) is very
useful because of its mathematical simplicity and casc of application.
This equation can be used to calculate the Brillouin spectrum when the
macroscopic hydrodynamic equations fail. Using this equation, we can

translate physical ideas about the nature of Brillouin scattering from

a polymer fluid into mathematical terms with a minimum set of assump-




tions about the complex nature of the fluid state of macromolecules.

In the absence of an explicit Liouville operator to calculate w
and K(t), we can argue that for a polymer fluid, there are strong
interactions between translational and orientational motions of each
segment and between segments so that the normal modes Eq should equi-
librate rapidly. Thus, we may expect a set of fully quantized vibra-
tional states with an energy separation approximately equal to the hy-
personic ffequency. In flexible chain molecules at ordinary tempera-
tures, the vibrational relaxation rates for the quantized vibrational
modes are fast. Moreover, there will also be a distribution of relax-
ation times for chain segments to change from one state to another.
Therefore, for the normal mode given in Eq. (6), the frequency w_ may
take a real finite value. We assume that wq is equal to the undamped
hypersonic frequency. We show in Appendix I that wq is related to the
isothermal compressibility of the polymer liquid.

The memory function K(t) decays exponentially with a distribution

of relaxation times,

K(1) =/ f(Tr) e‘T/Tr dTr
: (18)

where f(rr) is the distribution function of relaxation times. For a
single relaxation time R f(rr) is proportional to a delta function
G(Tr—TR).

Knowing wq and K(t), we can now solve Eq.(13) by the Laplace

transform technique.

> ™

(ql2) =/ Cqlt) d

0

Define ~zt

dt (19)

K(z2) =/ K(t) e * " dt (20)
(0]
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we obtain by taking the Laplace transform of Eq. (13),

- <t £ *
€)= a9t Q

5 Z. = “g + K@z) (21)

where

A v il Y dy
K(z) / — T

T (22)
The Brillouin spectrum corresponds to the real part of Cq(iw). We

shall call.this function Iq(m), which can be calculated from Eqs. (20)

and (21). The result for Iq[m) is

< f
Wk e
e B B 14w’ T.(‘I‘
q4 Yo r

3 = = A‘ . - q o
tqted.= ReiCiiel B R L0 . ERZICRT O
[L 1‘+w T T drt ] > [u) u)qof 1+?1 7__ L2 I

(23)

APPLICATION TO BULK POLYMER LIQUIDS
Although it is believed in general a distribution of relaxation
times is involved in a polymer system, we shall show that the single
relaxation time model provides a satisfactory interpretation of the
Brillouin scattering spectrum of a viscoelastic polymer liquid. To

illustrate this we assume

¥, -t/1
K(t) = A e R (24)

where TR is the relaxation time and A is the amplitude of K(t) at t = o,

and is given by

: ‘<F 3 *>‘7
5 o o & e, SRS S
<le 1? - (353
q

In this medel, Eq. (23) reduces to
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"3 FERAE T 5 o 2. 22
1 +w" "R / (ATR/H,D/TR«)? + (m—m(l-mAIR?/lx\w R )

(26)

Equation (26) can now be used to analyze the experimentally deter-
mined Brillouin spectra of bulk polypropylene glycol. The Brillouin
spectra of this polymer liquid at various molecular weights have been
accurately.measurcd in our laboratory. To fit the experimental spec-
tra, one notcs that Eq. :20) contains three adjustable parameters: o
(the unperturbed acoustic frequency), A (the amplitude of the memory
function K(t) at T = o) and TR (the relaxation time of the memory func-
tion). However, the nature of these parameters is well understood and
no ambiguity to the curve fit will exist.

It is easy to show that A corresponds to the square of the modula-
tion amplitude associated with the torsional motion of polymer segments
in the direction perpendicular to the propagation direction of the hy-
personic wave.

The unperturbed acoustic frequency wq also depends weakly on tem-

perature. According to Eq. (26), the Is(m) function has a maximum at

w = mp’ which is related to mq according to

iy = e 2§ W T
s MR /1+ mp R
& ’ 2 { 2 2 27
RS e e (27)
fhe scecond cquality holds because MR:’/ (1 mp"HR")( Ee
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Cquation (27) gives the disner<ion relation for 0y For wer <1,
™~

the dispersion curve has a reverse S-shape when 0, is plotted as a func-

;; tion of temperature, provided that we assume
>

, TR = Ty exp (E /KkT)
b s (28)

s At high temperature one has ATR2 << 1, and wp approaches w_. Thus wq

is equal approximately to the Brillouin peak frequency at high tempera-

ture when the amplitude of modulation is small compared with the relax-

B ation rate.
7'4 We have used the least squares fitting procedure to fit the theo-
= retical peak frequency and linewidth as computed by using Eq. (26) to
the experimental values at various temperatures. The fit was carried
out by first generating a spectrum at one temperature using reasonable
values of A, Ty and Ea‘ The theoretical spectrum was then compared
with the experimental one. The procedure was repeated with different

values of A, T and Ea until the theoretical spectrum quite resembles

the experimental one. Next the spectra were generated at all temper-
atures, from which the peak frequencies and linewidths were read and
compared with the experimental values. The difference between theoret-
ical and experimental values is then minimized with a least squares
fitting program by further adjusting the values of A, Ty and Ea'

In Fig. 2, we show the Brillouin peak frequencies and the spectral
linewidths (the half width at half height) determined by the curve fit-
tine procedure, also including the experimental results between 280 and
400 K for comparison. The agreement between the theoretical and ex-

perimental results is quite good in this temperature region, consider-

ing the fact that only three parameters (A, Ea and TO) were used to fit
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two separate sets of data: frequency shifts and linewidths. It should
also be pointed out the agreement between the experiment and theory,
given in Figure 2 could be improved if we allow w_to depend on tem-
perature. As shown in Appendix I, wq is proportinal to (pr)_VZ, where p and
Xp are density and isothermal compressibility of the fluid, respectively.
Both quantities depend on temperature slightly. Increasing temperature
has a tendency of decreasing wq because PXp increases slightly with in-
creasing témperature. As a result, the peak frequency and linewidth
shown in Figure 2 will be depressed downward at high temperature and
pushed upward at low temperature, thus bringing a better agreement with
the experimental result than the fit using a temperature independent w
which is used in the present work. However, since we don't have complete p and
X data for PPG, the present procedure is sufficient to demonstrate the
validity of the theory.

Below 280 K, the calculated Brillouin peak frequencies are smaller
than the experimental values, due to the fact that the relaxation rate
TR-I becomes comparable to wq at this temperature. In this situation,

one would expect strong coupling between the normal mode Eq and the

velocity F, and we can no longer consider F to be a fast dynamic vari-

able to modulate gq; both must be considered with equal weight. More-
over, since mq is about equal to the modulation amplitude YA, in this
situation the precise functional form of the memory function becomes
important, and we do not expect that Eq. (24) is valid at low tempera-
ture.

We now consider in more detail the quantity A, which is a measure

of the square of modulation amplitude associated with the motion of

polymer segments in the direction perpendicular to Cq' In Apendix II,
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we show that A can be written as

2 ; P _ 4P
A = %{£%-2 TIL 20 M2y - %), §%Iq2 - w 2}
| o 0 o 32232? q
: (29)
where u is the total potential energy of the system and m is the

mass of monomer. The 3kTq2/m term can be calculated and is found to be

only about one quarter of the value of qu for PPG in the temperature

poo range . considered. The important term for A thus comes from the

potential energy part.

We then assume that the range of intermolecular interaction po-
tential is short compared with the wavelength of light (or q'l), and
iq(z} - z?f

in this case we can expand the phase factor e in powers of

q. The first non-vanishing q dependent term is found to be equal tol0

2 32u -2
A= R = @t - z? ) >
ppij BZiaZ
2 1 32 ) = 2
= B LR = = 52 (Zg - Z? ) >
p p1) 3 (Zi = Zj) (30)

According to Eq. (25), A is positive, and thus Ap must be greater

than the qu term, this is consistent with the stability condition con-
32u

P _ P72
; Wiy & 3

One notes that Ap vanishes when Z? = Z?. Thus the existence of A

depends on the presence of intermolecular (or inter-scgmental) inter-

dition for a physical system for which we always have > 0.

actions. This result is important in the casc of dilute polymer solu-

tion, in which the polymer dynamics depends only on the polymer-solvent

and intrachain interactions. 4
Since the intermolecular interaction u is short-range, it may be

expanded in terms of power series of the intermolecular (or inter-seg-
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L z : du P p’ ] z : 32u
u=u_ + —e (ZF - ZE ) & = N . N
0o - .
p p i ] 2 p P2
o e @O - 25 s ol - 2%
») ( 1 J ) Pp 1) ( 1 J )

R SR
(- 25y ... et

Comparing with Eq. (31), we may consider Ap in Eq. (30) as the spatial
second moment of the intermolecular potential energy. For t # 0 this
spatial seEond moment changes because of molecular motion which modu-
lates the intermolecular distance and relative orientations. For mac-
romolecules, the center of mass motion is slow; the torsional motion
involving only relatively small numbers of segments is thus most effec-
tive in the modulation of the second moment.

Our computer curve-fitting result in PPG indicates that the modu-
lation amplitude VA is insensitive to temperature variation. The value
of VA is also found equal to mq throughout the 280 - 400 K temperature
range. On the other hand the relaxation time ™ is found strongly tem-
perature dependent. Using Eq. (28), we have found Ty = 0.94 x 10_13
sec and the activation energy Ea = 3.1 + (0.02) kcal/mole. Within the

entire temperature range we have further found that VA t_ is less than

R
unity. This validates the second step of Eq. (27), thus indicating

that the Brillouin scattering spectra of PPG betwcen 280 and 400 K may
be described in terms of a stochastic process of fast modulation.

As pointed out above, the relaxation time cannot be associated with
the center of mass motion, but rather with the motion involving a small
number of segments. The rapid motion of a chain segment from one posi-
tion to another will involve a local reorganization of the structure of

the polymer liquid. The microscopic picture is apparently implied in

it
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the phenomenological theory of structural relaxation in a viscous lig-
uid developed by Isakovich and Chaban.!! In reference 11, the diffu-
sion of holes taking place in the viscoelastic liquid is considered

to be the mechanism for the structural relaxation process. In our

present microscopic theory R is the measurement of relaxation times

associated with the modulation of the spatial second moment of the po-

tential energy. Relaxation occurs because of fluctuations of segmental

positions. Thus, the present microscopic theory serves to provide the

Isakovich and Chaban phenomenological theory with a more satisfactory

statistical foundation.

Finally, it should be pointed out that despite the fact that we

expect in general a distribution of relaxation times for a polymer sys-

tem, the single relaxation time model seems to fit satisfactorily the
experimental results. This may be understood from Eq. (30) because
only the modulation of the short-range intersegmental interaction po-
tential can make a contribution to the memory function K(t). The dis-
persion and relaxation in the Brillouin scattering spectrum of a bulk
polymer liquid involves only short-range localized segmental motions.
The distribution of relaxation times due to the motion of an entire
polymer chain will not enter into the picture. This suggests that the
Brillouin scattering spectrum of a bulk polymer liquid should be inde-
pendent of molecular weight. This is clearly in agreement with the ex-

perimental result on polypropylene glycol.2:3,"

SUMMARY AND CONCLUSION
We have analyzed the effect of segmental motion on the density-

density correlation function of a polymer fluid. The density;density
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correlation function is proportional to the Fourier transform of the
Brillouin-Rayleigh spectrum which one can measure experimentally.

We have utilized the linear response theory to analyze the Bril-
louin spectra in terms of the dynamics of polymer chain segments in
bulk polymer systems. We have shown that for polymer fluids of high
viscosity Brillouin scattering is due to normal modes associated with
the motion of chain segments. When the modulation amplitude is small
compared w}th the relaxation rate, we have shown that a single relaxa-
tion time theory will provide a satisfactory description of the hyper-
sonic frequency and Brillouin spectral linewidth data as a function of
temperature. By comparing the theoretical expression with the experi-
mental result we have also obtained the activation energy associated
with the relaxation time and the modulation amplitude. The latter
quantity is then used to delineate the mechanism involved in causing
the dispersion and attenuation of the hypersonic wave. It is found
that the localized motion which causes modulation of the second moment
of the intermolecular interaction potential is responsible for the dis-
persion and attenuation of the hypersonic wave. We have thus estab-
lished the fact that Brillouin scattering probes only short-ranged
localized motion. We have also explained why the Brillouin scatter-
ing spectrum of a viscoelastic polymer liquid does not depend on the
molecular weight.

Another significant result in the present work is that the Bril-
louin spectral linewidth is related to the relaxation of a correlation
function of the velocity of normal modes associated with the chain
segments of different macromolecules. It is thus clear from the mathe-

matical point of view that the maximum position in the Brillouin line-
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width versus temperature curve will not necessarily correspond to maxi-
mum point in the NMR T1 or (Tlp) versus temperature data because the
three techniques are sensitive to different types of relaxation pro-
cesses. We expect in general that Brillouin scattering will provide

supplementary information which cannot be obtained or extrapolated from

other relaxation techniques.
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APPENDIX I

The frequency mq and the isothermal compressibility.

.
The frequency wq given by Eq. (14) can be either positive or

negative depending on whether Eq substitutes for E, or £ . In either

case, the derivation is similar. We give only the derivation asso-

ciated with g, - Substituting Eq. (6) into Eq. (14) we obtain

; g
W= %{<( L 1) e
k. <|8o]2>% <|g_|25%
g *
s <G Z %) 6944% 5
<lg, |*=" <lsn}?> (1,1)

Since the Liouville operator, L, is Hermitian, Eq. (I,1) can be re-

written as

*
1 <(iLép)g, > <gz(iLéo)*>
w = {(-1

+ (i) I 1}
<|6p|2>;5<|gz|2>g <|<Sp|2>'5<|gz|2>'2
(1,2)
Using the definitions for 6p and g, (Eqs. (4) and (5)), we obtain
1 P
G <lg, 1%
e e, s

According to the principle of equipaitition of energy, we have

1 3 KT.%
.n_‘.<|gzl2> = (N—m—) (In4)

where N is the total number of scpments (light scatterers) within the

scattering volume, V.

In the limit of small q, it is true that’

| R
<|50|2>% . (Vrt)szxTT5 = (Npk'rx-,.)!s (1,5)




(A.1.2)

where p is the number of segments per unit volume. Xy is the iso-

Combining Eqs. (1,3), (I,4), and (7,5), we
obtain the final expression for w :

thermal compressibility.

mq:-—.__(l_r=qc

% T
(omxT)

(1,6)
where CT = (DmXT)-% is the expression for the isothermal sound veloc-
ityS. Equation (I,6) is exactly the definition of isothermal sound

frequency. Similarly, for €_, the result is:

0y = ~aCy (1,7)

where, as in (I,6), both q and CT are the absolute values.

-




APPENDIX II

Reduction of the Expression of Modulation amplitude A.

Since Eq is normalized, using the result of Appendix I, we reduce
Eq. (25) to

A = {<(ile) (Le) > - qu} (11,1)

Substituting Eq. (6) into the above equation, we obtain a new expres-

sion for A:

*
<(iLg ) (iLg)) >
e
<lg,|%>

(I1,2)

Using the definition of E, and the principle of equipaition of kinet-
ic energy for each segment, we now expand the first term of Eq. (II,2)
into
- . % l"
<(ilg,) (ilg)) > 1 (r,;)

- > 32 2
<ig |2> NmkT {§<(pzi) S m?Z o
z

: = : - " £ . 2 2 1q(Z. = Z.)
+ i#g <(Pzi sz + 1qkT(sz pzi) + g¢(kT)<) e i 3’

(11,3)
where the double summation I I of Eq. (6) is replaced by the single

PJ
summation £ (or I) of the segments over the whole scattering volume;
1 j

the momentum of each segment in Z direction mpi i? is replaced by sz.

This can be done provided that each segment has the same mass m.

We understand that the ensembly average <X> of any physical quantity X
-BH

Z

then integrating the product over the whole phase space. We shall as-

is equivalent to multiplying X by the distribution function £ and

sume that the Hamiltonian H has the form




e

Pi2 '

H=Z-—-——+u(rl,r2, ceer)

. i y (11,4)
The ensembly averaging of each term in Eq. (II,3) can be carried out

as follows,
b 2 1 -BH ,° N N
) 2 = 2

3 <(pZi) gkt fe (pzi) dr dp

= %d/r ( )2 r d'p

1
B 2
8 azi (I1,5)

-v-'f' "‘#‘: M-‘ )

55

where to obtain the last step, we have carried out integration by parts.

It is easy to obtain,

Z
%5 <pi“> = 3q2(kT)?2 (I1,6)

Likewise, we consider

s om0, = 2. 1 -BH Bu lq(Z. - 2.)
<PiPj e 1 i> = 5 e (dZ (SZJ) i j

d"r d"p
‘7w f‘%e'”) S e
i%%j
g (azaa; ) e 4R
” ZBZ /[m( -8H iq(_%e-sll) B LT
j
eiq(zi & ) e d P

+ M

- %;.<ei9(2i gl Y (11,7)
" where M = %—<(az:§§j) e19(Zy - 25, (11,8)
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In order to obtain Eq.

(IT,7) integrations by parts have been used
repetitively.

Consider next the fourth term in Eq. (I1,3)

iqkT <(pj g Pi) e1q(Zi -Z.)

Jo >
J/‘( aH a;”) -8H iq(Z, - Z, ) P b
% ezz/( BN D ey G - 20 N R
i

2q% _ iq(Z, - 2.)
B Pt (11,9)
Combining Eqs. (11,3), (II,4), (I1,5), (II,6), (11,7) and (I1,9),
and substituting the result into Eq

(11,2), we obtain the expression
for A as
_1 1 32u_ iq(z; - z.), , 3kTq2
et B0 5 o i M L SR o
i g i j
(11,10) |
which is equivalent to Eq. (29) in the text.
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Figure 1.

Figure 2.

Figure Captions

The Brillouin peak frequency and linewidth as a function
of shear viscosity. The solid points are the frequency

and empty ones are the linewidth.

Comparison of the theoretical and experimental Brillouin

peak frequency and linewidth data as a function of temperature.
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